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The classical analysis of kinetic data for diffusion limited heterogeneous catalytic 
reactions in terms of effectiveness factors is based upon the assumption that the 
effective diffusivity is independent, of concentration. Zeolitic diffusivities are, how- 
ever, concentration deptndent, so t,hat the classical analysis is not, in general, 
applicable to molecular sieve catalysts. In this paper theoretical concentration pro- 
files and the corresponding effectiveness factors are calculated from the steady-state 
solution of the diffrrrntial equation for diffusion with first order reaction for systems 
in which the concentration dependence of the effective diffusivity arises from the 
nonlinearity of a Langmuir equilibrium isotherm. Both the concentration profiles 
and the effectiveness factors show considerable differences from the classical solu- 
tions for systems with constant diffusivity. A simple expression, which gives a use- 
ful approximation for the effectiveness factor in the limiting case of high diffusional 
resistance, is derived. It is suggested that the approximations involved in the analysis 
should be reasonable for certain molecular sieve catalysts. 

NOMENCLATURE 

radius of spherical particle 
Langmuir equilibrium constant 
sorbate concentration 
sorbate concentration at center of 
zeolite particle 
sorbate concentration at zeolite surface 
sorbate concentration at saturation 
sorbate diffusivity 
RT/K = diffusivity as c + 0 
first order rate constant 
half-thickness of slab 
equilibrium sorbate pressure 
radial coordinate 
gas constant 
absolute temperature 
distance measured from center of slab 
x/L = dimensionless distance 
r/a = dimensionless radial distance 
sorbate activity 
drag coefficient [defined by Eq. (l)] 
C/C,, e. = co/c,, e, = G/G 
L(Ic/D)~'~ or L(?c/D*)~'~ = Thiele modu- 
lus for slab 
u(~/D)~'~ or ~(lc/D*)~'~ = Thiele modu- 
lus for sphere 

11 effectiveness factor 
P reaction rate 

INTRODUCTION 

Owing to their desirable properties of 
high selectivity and activity, molecular 
sieve catalysts have gained considerable 
importance in the petroleum and allied in- 
dustries. Although the significance of dif- 
fusional resistance in the interpretation of 
kinetic data for such catalysts has been 
recognized, there has been little theoretical 
analysis (1, 2). Molecular sieve catalysts 
consist of small crystals of zeolite pelleted 
with a clay binder. Two distinct diffusional 
processes are therefore involved: diffusion 
through the macropores of the pellet and 
diffusion within the micropores of the zeo- 
lite crystals. Studies of diffusion in such 
systems have, however, shown that the 
diffusional resistance of the macropores is 
often insignificant in comparison with the 
micropore resistance (3, 4). Under these 
conditions the problem of the analysis of 
kinetic data for a chemical reaction be- 
comes formally similar to the classical 
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problem of simultaneous diffusion and re- 
action in a porous catalyst, but with the 
significant difference that the relevant 
particle is the zeolite crystal and the 
overall dimensions of the pellet are not 
important. It has been assumed that the 
classical analysis given by Thiele (5) and 
Wheeler (6) may be applied directly to 
molecular sieve catalysts with the Thiele 
modulus based on the crystal radius rather 
than the pellet radius (7). Recent studies 
of diffusion in molecular sieves have, how- 
ever, shown that the effective diffusivities 
are often strongly concentration dependent 
so that the classical analysis, which as- 
sumes a constant diffusivity, is not, in 
general, applicable to zeolite catalysts (3, 
8). It is therefore pertinent to consider the 
way in which the analysis must be modi- 
fied to take account of the concentration 
dependence of the diffusivity. 

For many systems the concentration de- 
pendence of zeolitic diffusivity is related 
to the nonlinearity of the sorption equi- 
librium isotherm; 

D _ RT.dlnar _ RT dlnp 
alnc K . ac (1) 

K 

where K is a coefficient which is independent 
of concentration. If the equilibrium iso- 
therm can be approximated by a Langmuir 
equation: 

tJ = c/c, = bpl(l + bp), 

Eq. (1) becomes: 

(2) 

D = (RT/K) . [l/(1 - e)] = D*/(l - O), 

(3) 

where 

De = RT/K 
= diffusivity at zero sorbate concentra- 

tion. 

Although not exact, the Langmuir equa- 
tion does provide a useful approximate 
description of the equilibrium isotherms 
for many zeolites and, for such systems, 
Eq. (3) may therefore be expected to give 
a reasonable approximation for the con- 
centration dependence of the diffusivity. 
The rapid increase in diffusivity as satura- 
tion is approached has been observed ex- 

perimentally (3, 8) although the ultimate 
limit (0 + 1, D + co) is not physically 
meaningful. In the present paper theoret- 
ical concentration profiles and the cor- 
responding effectiveness factors are calcu- 
lated for a first order irreversible reaction 
occurring in a zeolite in which the con- 
centration dependence of reactant, diffu- 
sivity is governed by Eq. (3). The solu- 
tions, which are obtained both for an 
infinite slab of zeolite and for spherical 
particles, show substantal deviations from 
the st’andard solutions for systems with 
constant diffusivity. 

THEDRETICAL ANALYSIS 

The specific problem considered is the 
diffusion of a sorbate within a zeolite 
crystal in which it is continuously de- 
stroyed according to an irreversible first 
order reaction. It is assumed that the 
system is isothermal, that the diffusion of 
the products of reaction is rapid, and that 
the diffusivity of the reactant depends only 
on its concentration and is unaffected by 
the counterdiffusion of the products of re- 
action. For an infinite slab of zeolite of 
thickness 2L, the steady-state concentra- 
tion profile is given by the solution of the 
differential equation: 

(d/dz)[D . (dq’dz)] = kc, (4) 

subject to the boundary conditions: 

x=0,dc/dx=0;x=L,c=co. (5) 

The corresponding equation for a sphere 
of radius a is: 

with the boundary conditions: 

r = 0, dc/dr = 0; r = a, c = co. (7) 

For systems in which the diffusivity is 
independent of concentration the solutions 
of Eqs. (4) and (6) are well known (1) : 

Slab : c/co = cosh(& . y)/cosh $L; (8) 

Sphere: c/co = sinh(+, . z)/z sinh &. (9) 

The corresponding expressions for the ef- 
fectiveness factor 7, which may be ob- 
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t,aincd from Eqs. (8) and (9) by integra- 
tion are: 

Slab: 7j = (l/l#JL) . tanh r$L.; (10) 
Sphere: r] = (3/&)[(l/tanh &) - (l/4.)]. 

(11) 

For systems in which the diffusivity 
varies with concentration according to Eq. 
(3)) the relevant dimensionless differential 
equations corresponding to Eqs. (4) and 
(6) are: 

y Slal, : = +I,? (j (1 - 0). 
1 

(12) 

n-here 
= &‘. 0(1 - e), (13) 

+I. = L(k/D*)“’ (Modified Thiele Moduli), 
@KS = n(k/D*)““, 

y = 0, de/dy = 0, u = 0, (17) 
and Eq. 16 may thus be integrated to give: 

u2 = 7 2 4~~ (e, - e) + In e 
1 ( ), 

(1s) 

01' 

1 de 

i-e'&= 
4L 

. 42 8, - e + III 1 
L ( )I 

“’ 
i-e 

(19) 

The expression for the effectiveness factor 
is thus given by: 

D dc 
0 

1 de 
rl = G . cl.?: r=L = 9L2eo(i - e,j do (-> z/=, 

(20) 

42 
= G 8, - e. + In e 

I ( >1 

l/2 
. (21) 

0 0 

Integration of Eq. 19 gives: 

with the boundary conditions: and for u = I, 8 = 0(, u-e obtain: 

(23) 

ShLb : !J = 0, de/d?/ = 0; y = 1.0, 
e = eo; (14) 

Sphere: 1/ = 0, de/d2 = 0; 2 = 1.0, 
e = eo. (1.5) 

For any given values of B. and + these 
equations (12 or 13) may be solved 
numerically to obtain the dimensionless 
concentration profile and the effective- 
ness factor may then be calculated from 
the integrals 7 = jizoB.dy (slab) and v = 
3&,,6 -2 dx (sphere). 

For the case of the slab, an analytic 
solution may be obtained, in parametric 
form, by change of variable. With the 
substitution u = [I/( 1 - 0) ] (dQ/dy), Eq. 
I2 becomes : 

u . (dujde) = (pL2 . [e/(1 - e)]. (16) 
The boundary condition at the center of 
the slab, where the dimensionless concen- 
tration is 8,, becomes: 

Equations (21)-(23) thus provide ex- 
pressions for the effectiveness factor and 
the concentration profile in terms of the 
independent variables, +,, and BO, and the 
parameter 8,.. When 8, is small, Eq. 21 
becomes : 

D ‘V (l/a/e,+,)[-e, - 111 (1 - eo)pe (24) 

This expression provides a useful approxi- 
mation for the effectiveness factor which 
is valid when 7 < 4~5. It, may bc shown, 
by expansion of the logarithm, that 

the same as for the constant diffusivity 
case (Eq. 8) at large values of +,,. 

Plots of effectiveness factor vs modified 
Thiele modulus are shown, for various 
values of BO, in Figs. 1 and 2. Also shown 
in these figures are the curves for the 
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FIG. 1. Effectiveness factors for a slab with concentration dependent diffusivity. 

constant diffusivity case calculated from 
Eqs. (10) and (11). It is evident that the 
effect of the concentration dependent dif- 
fusivity is quite large. 

For the constant diffusivity case it has 
been shown that the effect of particle 
shape can be accounted for by using a 
modified Thiele modulus in which the 
length parameter is taken as the ratio of 
volume to external area (9). Thus, the 
curves for the slab and sphere become 
nearly coincident when & = +,/3. This 
conclusion appears to be equally valid for 
the variable diffusivity system as may be 
seen from Fig. 3, in which the 17 vs + 
curves for slab and sphere are compared 
for the constant diffusivity case and for 
the variable diffusivity case with B0 = 0.90. 
The limiting expression for the effective- 
ness factor calculated from Eq. 24 is also 
shown and it is evident that this expression 
is a reasonable approximation for the low 
effectiveness factor region (7 < 0.5). 

in Figs. 4 and 5 for both slab and sphere 
at comparable values and Thiele modulus 
(#Q = 12; $L = 4.0). It is evident t.hat the 
profiles for slab and sphere differ signifi- 
cantly although the corresponding effec- 
tiveness factors are quite similar. The dif- 
ference between the concentration profiles 
for constant and variable diffusivity is 
also indicated. 

It is pertinent to consider how the over- 
all kinetics of reaction are affected by pore 
diffusional resistance when the effective 
diffusivity shows this type of concentration 
dependence. Assuming that adsorption 
equilibrium is maintained at the surface 
of the zeolite, the overall react,ion rate p 
will be given by: 

p = kc07 = kc.+ biu + wi t (25) 

Typical concentration profiles are shown 

Tinder conditions of high pore diffusional 
resistance the effectiveness factor, for the 
variable diffusivity case, is given by Eq. 
24, with 0, = bp/( 1 + bp), and for the 
constant diffusivity case, by 17 N ~/C/Q,. 

1 

FIG. 2. Effectiveness factors for spherical particles with concentration dependent diffusivity. 
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FIG. 3. Comparison of effectiveness factors for 
slab and sphere. 

Constant Diffusivity: $ = I __ bp (26) 
s +r, 1 + bl, 

Variable Diff usivity : 

kg = $L 1 2/5 ln(l + bp) - hj]“‘). 
{ [ 

(27) 

These expressions are compared, for the 
arbitrary value of +L = 5.0, in Fig. 6 in 
which the dimensionless reaction rate is 
plotted against reactant pressure. Shown 
also in this figure is the curve which would 
be obtained in the absence of pore diffu- 
sional resistance, as given by Eq. 25 with 
11 = 1.0. It is evident that the concentra- 
tion dependence of diffusivity causes an 
appreciable modification of the rate- 
pressure curve thus affecting the apparent 

FIG. 4. Concentration profiles for a slab- 
comparison of constant and variable diffusivity 
cases. 
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FIG. 5. Concentration profiles for spherical parti- 
cles-comparison of constant and variable diffusivity 
cases. 

order of reaction. Since both b and +,, will 
in general be functions of temperature, the 
temperature dependence of reaction rate 
in such a system will be complex. 

The strong concentration dependence of 
zeolitic diffusion coefficients complicates 
the analysis and interpretation of kinetic 
data for molecular sieve catalysts. Never- 
theless, under certain idealized conditions, 
theoretical effectiveness factors may be 
calculated and, in the region of high dif- 

High dlffuslonal 
resistance 

~~~ 

00 10 20 30 40 50 Bo 
bp 

FIG. 6. Dependence of reaction rate on reactant 
part’ial pressure. 
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fusional resistance, a simple approximate 
analytical expression for the effectiveness 
factor is obtained. Although restrictive, the 
approximat’ions involved in this analysis 
would appear to be reasonable for many 
practical systems, particularly for cracking 
or hydrocracking reactions in small port 
zeolites. The intrinsic kinetics of such re- 
actions are often first order and, owing to 
the decrease in the molecule size, the dif- 
fusivity of the reaction products would be 
expected to be considerably larger than 
that of the reactants, in accordance with 
the basic postulates of the theory. For such 
systems the analysis presented should 
therefore be of value for the interpretation 
of kinetic data. Available kinetic data are, 
however, not sufficiently extensive to allow 
the theory to be tested experimentally so 
that it must, at present, be regarded as 
tentative. 
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